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SUMMARY

A systematic study of threat effectiveness for antiaircraft artillery (AAA)

systems requires the development of a mathematical model for the gunner's

tracking response. The gunner (or tracker) model is then incorporated into

computer simulation programs for predicting aircraft attrition with respect

to specific antiaircraft weapon systems. Two of the fundamental design

requirements of a gunner model are simplicity in model structure and

accuracy in the tracking error predictions. A simple gunner model structure

will shorten computer simulation execution time. Obviously, accurate

predictions of tracking error implies model fidelity with respect to

describing the gunner's tracking performance. The Luenberger full-order

observer theory has been applied to design a human operator model (observer

model) for AAA tracker response which has been documented in a previous

report. This technical report will describe the development of an anti-

aircraft gunner model based on the Luenberger reduced-order observer theory.

It satisfies both the design requirements mentioned above. It is composed

of three main parts - a reduced-order observer, a feedback controller, and

a remnant element.

A parameter identification program based on the least squares curve-fitting

method and the Gauss-Newton gradient algorithm is developed to systematically

determine the model parameters. This program iteratively adjusts the

parameter values to minimize the error between the model prediction of

tracking error and actual human tracking data obtained from manned AAA

simulation experiments conducted at the Aerospace Medical Research Laboratory,

Wright-Patterson Air Force Base, Ohio. Computer simulation results-of the

4 AAA tracking task using this model are in excellent agreement with the

empirical data for several aircraft flyby and maneuvering trajectories. A

comparison between this model and the optimal control model by Kleinman,

Baron, and Levison is also given. This model is shown to be as accurate as

the optimal control model in predicting tracking errors. In addition, the

computer execution time of the AAA closed loop system simulation utilizing

this model is less than 15 percent of that using the optimal control model.

Therefore, this gunner model can be used accurately and efficiently in the

study of the AAA effectiveness and aircraft survivability.
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Section I

INTRODUCTION

A computer simulation study of threat effectiveness for antiaircraft

artillery (AAA) systems requires the development of a mathmetical model for

the gunner (or tracker or human operator) response. The gunner model

represents the human operator's control characteristics in a compensatory

tracking task. It is then incorporated into computer engagement simulation

programs [l] for predicting aircraft attrition with respect to specific

antiaircraft weapon systems. Two of the fundamental design requirements of

a gunner model are simplicity in model structure and accuracy in the

tracking error predictions. A simple gunner model structure will shorten

computer simulation execution time. Obviously, accurate predictions of

tracking error implies model fidelity with respect to describing the

gunner's tracking performance. Then, the manned threat quantification in

the threat analysis will be reliable.

An antiaircraft gunner model based on the Luenberger full-order observer

theory [2] was developed and documented in a previous report [3]. In this

report, the Luenberger reduced-order observer theory [4], [5] is applied to

develop a tracker model for AAA compensatory tracking task. It satisfies

both the design requirements mentioned above. The structure of the model

is simple and its predictions of tracking errors are accurate. It is

composed of three main parts - a reduced-order observer, a feedback con-

troller, and a remnant element. An observer is itself a dynamic system

whose output can be used as an estimate of the state of a given system. A

reduced-order observer has dynamic order less than the observed system and

provides an estimate of those state components which are not available for

direct measurement. The structure of a reduced-order observer is simple

and its design is easy. The idea- of using a reduced-order observer in the

tracker model design is to obtain an appropriate estimate of the state

components (which are not directly measurable) of the gunsight system and

the target motion. When the gunner (a human operator)-observes the tracking

error from the visual display, he not only obtains the tracking error

information, but also has a certain understanding or knowledge about other

6



variables (state components) of the overall system. It is one of the main

differences between human tracking and machine tracking. A human operator

(gunner) can always realize more information about the system than what is

on the display. This fact is represented by a reduced-order observer in

the gunner model. The estimated state components from the reduced-order

observer and the observed state components from the display are then used

to implement a linear feedback controller which represents the gunner's

control function in the compensatory tracking task. The effects of all the

randomness sources due to human psychophysical limitations and of modelling

errors are lumped into one random remnant element in this model design.

Another important feature of this model is that its parameters can be

determined systematically instead of by trial-and-error. A parameter

identification program based on the least squares curve-fitting method [6]

and the Gauss-Newton gradient algorithm [7] is developed for this purpose.

This prof:am iteratively adjusts the parameter values to minimize the least

squares error between the model prediction of tracking error and actual

human tracking data obtained from manned AAA simulation experiments conducted

at the Aerospace Medical Research Laboratory, WPAFB, Ohio. Thus it provides

a convenient procedure for model validation. In addition, a computer

simulation program ROOMS (Reduced-Order Observer Model Simulation) is

developed with the designed model describing the gunner's response for a

given AAA tracking task. The program provides time functions of the

ensemble mean and standard deviation for the model's tracking error pre-

dictions (azimuth and elevation). Computer simulation results are in

excellent agreement with the empirical data. Furthermore, this model is a

predictive model in the sense that it can be used to predict tracking

errors of an AAA system for various flyby and maneuvering trajectories with

similar frequency bandwidths.

A comparison between this model and the optimal control model [8], [9], and

[10] (by Kleinman, Baron, Levison) is also given. It can be shown that the

model based on observer theory is as accurate as the optimal control model

in predicting tracking errors. In addition, the computer execution time of

the AAA closed loop system simulation utilizing this model is less than

15 percent of that using the optimal control model. This is a primary

advantage of a model with simple structure.

7



The design of the antiaircraft gunner model based on the reduced-order

observer theory is described in detail in Section II. Section III gives

the model validation method and computer simulation results. The conclusion

is given in- Section IV.
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Section II

REDUCED-ORDER OBSERVER MODEL

In [3], the azimuth or elevation gunsight dynamics, rate-aided control

dynamics and the target motion of an antiaircraft artillery (AAA) gun

system have been represented by the following state space equation.

Ax + Bu + F; (1)
- T

where x is the state vector with two components,

[xO -X(t)] [e TWt
X2t0 'r I-1.

eT(t) is the tracking error, i.e., the difference between the target

position angle 6T and the..gunsight line angle 0. 0T is the target angle

rate. The scalars u and 0T in Eq (1) denote the tracker's control output

and target angle acceleration respectively. The matrices A, B, and F are

A = ll a] = 0 1

a 21 a 22J 0

B= b [ ,F f =

i b 20f21

The tracking error eT on the visual display is observed by the gunner and

is expressed in the measurement equation:

y = Cx (2)

9



where y is the observed tracking error and C is a row vector [1 0]. Next,

Equations (1) and (2) will be used to develop the reduced-order observer

model.

The structure of the reduced-order observer model is shown in Figure 1. It

consists of three main elements: a reduced-order observer, a controller,

and a remnant element. The reduced-order observer processes the tracker's

observation from the visual display to provide an estimate of those state

components of the AAA system which are not directly measurable. It will be

shown that the system equation (1) is a second order system, but the reduced-

order observer is only a first order system, since some components of the

state vector as given by the system outputs are already available by direct

measurement. The estimation of thcse measurable state components is not

necessary and will cause a certain degree of redundancy. The use of a

reduced-order observer eliminates this redundancy and provides an approximate

estimation of the state components which can't be measured directly. The

controller represents the gunner's tracking function by a state variable

linear feedback control law. The observer ...d the controller consists of

the deterministic part cf the gunner model. The effects of the various-

randomness sources in the AAA man-machine closed loop system and of the

modelling errors are lumped into one element called remnant, which is the

stochastic part of the gunner model. These randomness sources include the

modelling error, the observation error, the neuromotor noise, etc. Mathema-

tical equations of this model are given below.

A. Reduced-Oraier Observer Design

System equations (1) and (2) are used in the design of the first element

(reduced-order observer) of the gunner model. However, the gunner does

not have precise information about the target dynamics, so the term repre-

senting target acceleration, 0T, in Equation (1) will not be included in

the design of the observer equation. The effect on the tracking error due

to eliminating the 0T term will be included in the remnant element. Now

from Equation (2), y = Cx = xj, the cracking error is available from direct

observation. Thus, it ;. only necessary to estimate the second component

x2 of the state vector x in order to implement a state variable feedback

10
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control law. In the following, the Luenberger reduced-order observer

theory [4] and [5] is used to design the gunner model. First, with the T

term eliminated, Equation (1) can be rewritten as

Xl = a11x1 + al2x2 + blu (3)

x2 = a21xl + a22x2 + b2u (4)

Since the first state component xl is measurable, i.e., y = xl, Equation (3)

can also be expressed by

y = ally + al2x2 + blu

or equivalently,

y - ally = al2x2 + blu (5)

Let us introduce a new variable y = - ally, then Equations (4) and (5)

can be expressed by

x2 = a22x2 + a21Y + b2u (6)

and

y' = al2x2 + blU (7)

Now Equation (6) is the reduced-order system dynamic equation with measure-

ment data obtained by Equation (7). Note that Equations (6) and (7) are a

first order system with one measurement equation. An observer which gives

an estimate A2 of x2 can be easily designed as shown by te following

equation.

x2 = a22x 2 + a21Y + b2uc + k (y'- a1 2x2 - bluc)

(a2 2 - ka1 2) x2 + k; + (a21 - ka11 ) y + (b2 - kbl) uc (8)

12



where aij and bk are the elements of matrices A and B in Equation (1), the
scalar k is the observer gain, y and y are the observed tracking error and

error rate respectively, and u is the linear feedback control law (thec

controller) with the form:

U c [Yi 2 [y2]

where the feedback control gains yj and Y2 are two constants to be determined

later. Note that the state feedback is composed of y (the observed variable

which is xj) and A2 (the estimated state of x2). It can be shown that the

system (1) and (2) is completely observable. (The definition of observability

and the conditions of a system to be observable can be found in [11]. Then,

by the observer theory, there always exists an observer gain k to make the

eigenvalue of the observer (Equation (8)) negative. Thus, the output of the

observer will be a good estimation to the state of the observed system.

This shows the existence of proper observer gain k in Equation (8). Actually,

the value of observer gain k is determined by a curve-fitting identification

program. The required differentiation of y in Equation (8) can be avoided

by introducing the following variable:

z(t) = 2 - ky(t) (9)

Hence the observer dynamics can be represented by

= (a22 -ka1 2) z + (a22 - ka1 2) ky + (a21 - kall) y +

(b2 - kb) uc (10)

Next, the actual output of this model is expressed as the sum of the output

u of the controller and the remnant element v.

u u c+ v
C I

- [Y- i Y2] + v (11)

13



where the remnant term v(t) is modeled as a white noise and its statistical

properties are selected to be

E [v(t)] = 0 for all t

E Iv(t) v(T)] = q(t) 6(t - T) for all t and T (12)

where E is the expectation operator and the covariance function q(t) is a

scalar function of time and will be described later. 6 is the Dirac delta

function.

The gunner model equations of the observer, the controller, and the remnant

have been derived. These equations are combined with system equations (1)

and (2) to obtain the mathematical model of the closed loop AAA system.

Since x1 = y, Equations (1) and (10) can be rewritten as follows

= ally + al2x2 + blu + fl;T (13)

X2= a21Y + a22x2 + b2u + f2eT

= (a2 2 - kal2) z + (a2 2 - ka12) ky + (a21 - kall) y +

(b2 - kb l ) uc

u=u +vC

[Ti Y2] [y]

By introducing new variables:

X3 = x2 - ky

144
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and

e = X3 - z (14)

Equation (13) can be rewritten as

alla2k -bl(yl +1.YI y + (a12 -blY 2)X3 +

blY2e + f16 T + blv

x3 [(a22- ka2)k + (a2- kall) - (b2- kb) (YI + kY2) Y +

[a22 - ka12 - (b2 - kbl) Y2] X3 + (b2 -kbl) y2 e +

(2 - kbI) v + (f2 - kfl) 0 T

e = (a22- ka12) e + (f2 -kfl) T 
+ (b2 -kbl) v

Or equivalently,

AlX + Fl;T + Dlv (15)

where X is the state vector of the overall system with components:

x y
X x3 ad = --

e X3 z

A,, Fl, and D, are matrices defined as follows:

11



all + al2k - bj (Yi + k Y2) a 12 - b, y 2  b, Y2

A1 = (a2 2 - ka12)'k + a21 - kall - a22 - kal2 - (b2 - kbl)y 2

(b2 - kbl)(y 1 + ky2) (b2 - kbl)y 2

0 0 a22 - ka12

F1 =f2 - kfj , D1 = b2 - kb

f2 - kf1J b2 - kbl

In order to determine the parameters k, YI, Y2, and the covariance function

q(t) in Equation (12), we use the following equations. Letting the

expectation value of X be X then we have,

X = AIX + FIBT (16)

and the covariance matrix of X~t) is P(t) =E [(X(t) - 3 (t)) (x(t) - w l

then it can be shown in [11 ]that the covariance matrix is governed by

* PT T(7

AlP + PA1  +D 1 q(t) DIT  (17)

Equations (16) and (17) will be used in Section III to determine the values

of parameters in the gunner model.

16I



B. Frequency Domain Analysis

A detailed study of the frequency domain responses of some key time domain

variables of the AAA tracking system has been done. This will provide us

information to design the covariance function q(t) of the remnant element

(see Equation (12)). The power spectral density functions (PSD) of the

target angle 0T' angle rate 0T and angle acceleration ;T were generated for

the four flyby and maneuvering trajectories [3]. These PSD functions were

generated for both azimuth and elevation components of target motion

variables. It was found that the significant parts of all these PSD

functions are less than 0.5 Hz. In addition, similar PSD functions were

generated for the sample ensemble mean eT of tracking errors which were

obtained by averaging empirical data of sixteen runs. The empirical data

was generated from manned AAA simulation experimefits conducted at the

Aerospace Medical Research Laboratory, WPAFB. There is a significant con-

sistency between the PSD's of target angle acceleration 0T and the PSD's of

the corresponding sample ensemble mean eT of the tracking error. These

results are shown in Figures 2 through 9. There are two curves on each of

these figures. The solid curve denotes the PSD function of the empirical

mean of tracking error. The dashed curve describes the corresponding PSD

function of the target angle acceleration. Figures 2 through 5 show the

comparison of PSD functions of the azimuth case for four target trajectories,

respectively. Figures 6 through 9 show the similar results for the elevation

case. The low frequency parts of the PSD functions of target accelerations

match well the low frequency parts of the PSD functions of empirical means

of corresponding tracking errors. The high frequency parts of the PSD

functions of empirical mean tracking errors in these figures are the results

due to small sample size of experimental runs. Figure 8 shows that these

two PSD functions do not match. After further investigation, it was found

that the data tape containing the information of target elevation acceler-

ation was not properly generated. In this frequency domain analysis, it is

concluded that the tracking error in AAA tracking task depends on the

target acceleration. In other words, when the target aircraft makes a

maneuvering flight (i.e., the corresponding target acceleration increases),

the tracking difficulty increases and hence the tracking error increases.

This observation will be used in the next section to design the covariance

function of remnant element.
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Section III

MODEL VALIDATION

A. Time Domain Curve-Fitting Identification Method

The design of a gunner model included tio main procedures; the design of

the stiucture of the model and the determination of the values of the model

parameters. The structure of the gunner model based on observer theory has

been described in Section II. In this section, the parameters of the model

will be determined through an identification program. Figure 10 shows the

parameter determination procedure. The manned AAA simulator built at the

Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio, provides

the empirical tracking error data, eT(t), along with the simulated target

trajectory 0T as the'input. eT(t) represents the sample ensemble mean of

the tracking error of sixteen simulation runs. Now in Equation (16), the

first component of X is the expectation value of the tracking error, i.e.,
_'

the model prediction eT of the ensemble mean of the tracking error in the

AAA closed loop system. Ae denotes the difference between the empirical
T _

data eT and the model prediction eT. The criterion function evaluates

the "goodness of fit" between the model prediction and the empirical data.

In this study, the criterion function is selected to be

J =f f (t) - eT (t, yI, y, k))2dt

where tf is the tracking duration (equal to 45 seconds), eT is the model

prediction of the tracking error which is a function of time and the unknown

parameters. The explicit form of the function eT in terms of time t and

model parameters y, y2 and k has been derived and is included in Appendix A.

The criterion function J will be minimized with respect to these unknown

parameters. The Gauss Newton gradient algorithm was used as the parameter

adjustment algorithm to iteratively determine the values of model parameters.

The values of parameters obtained through this identification program are:

26



z

0 CYH an
H

H 0

H 0

44o
00

4

H PH

z

4 4P4

0 0
S.'

I 0I

0 4

4 271



Azimuth Tracking Elevation Tracking

Observer gain k 2.94 3.02

Controller gains y -2.87 -3.01

y -1.00 -1.00
2

Once the observer gain and the controller gains are determined, the system

matrix Al is known. Next the model prediction of the standard deviation of

the tracking error is considered. It can be shown that the square root of

the first diagonal element P11 of the covariance matrix P(t) in Equation (17)

is the standard deviation of the tracking error. The solution of Equation

(17) is

P(t) = 0(t, to) P(t0 ) 0T (t, to) +

f t *(t, T)Dq(r)DT * T(t, T)dT (18)

where 0(t, to) is the state transition matrix defined as

0(t, to  e Al(t-t0 )

and q(t) is the covariance matrix of the random remnant. It has been found

from the frequency domain analysis results that the tracking error depends

on the target trajectory dynamics, especially the target acceleration 0T .

Therefore, it is assumed that the covariance function q(t) of the remnant

is a function of the target dynamics as follows:

q(t) = al + a28T2(t) + c3OT2(t) (19)

where a, a and a are three nonnegative constants to be determined later
82 3
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and 6T and 8T are estimated target angle rate and acceleration, respectively.

The reason that only estimated values eT and 0T were used in Equation (19)

is that the gunner does not have precise information about eT and 6T (i.e.,

target uncertainty). These estimated quantities can be obtained as follows:

Equation (9) can be rewritten by

aT  z(t) + ky(t)

T

where z(t) is the output of the reduced-order observer, k is the observer

gain, and y(t) is the observed tracking error. Since all these quantities

are known, 6T can be computed. Next, by the first-order approximation, 0T

can be found from, f
6 T (tk)- OT(tk-l)

STk At

where tk = kAt, and At = 0.04 sec is the sampling period. Then by minimizing

the following cost function J', the parameters a , a , and a can be1 2 3
determined.

J =f f [s (t)- S (t, a , a , a)]2dt1 2 1 2 3

where S is the sample ensemble standard deviation of empirical trackingI

error of sixteen runs and S is the model prediction of the ensemble standard2

deviation (an explicit function of time and the parameters a , a , and a
1 2 3

Note that the curve-fitting of the standard deviation of tracking error is

also done in the time domain instead of in the frequency domain as in [3].

The derivation of the function S from Equation (18) is included in[ 2
Appendix B. The results of the parameter determination program in minimizing

J' are,
29
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Azimuth Elevation

a .0496 .00321

a .0024 .000472

a .103 .259
3

B. Computer Simulation Results

The numerical values of the parameters of this gunner model were determined

in the previous subsection with respect to the gunsight dynamic system

(Equation (1)) and a deterministic target trajectory. The gunner model is

now ready to be used for computer simulation. A computer program called

ROOMS simulates the AAA system with this model representing the gunner

response. The input to this program is the target motion trajectory. The

outputs are the model predictions of the ensemble mean and standard deviation

of the tracking error. These results are plotted in Figures 11 through 26.

There are two curves in each of these Figures. The solid curve denotes the

empirical tracking data. The corresponding model prediction is denoted by

the dotted curve.

Figures 11 through 14 give comparisons between the empirical data and the

model prediction of the ensemble mean of azimuth tracking errors for four

target trajectories. Obviously, the model predictions match the empirical

data very well for both flyby and maneuvering trajectories. It should be

emphasized that these results are obtained by using the designed gunner

model with the same set of model parameters (determined in the previous

subsection) applied to various trajectories. In other words, it verifies

that with the same set of parameters, the gunner model based on the reduced-

order observer theory can give accurate predictions of tracking errors in

AAA weapon systems for various target trajectories with similar frequency

bandwidths. Therefore, it is a predictive model. Next, Figures 15 through

18 give comparisons between the empirical data and the model prediction of
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the ensemble standard deviation of azimuth tracking errors for four

trajectories. Again, excellent matching between the two curves are shown

in each of these four figures. Similar results of the elevation case are

shown in Figures 19 through 26 for the four trajectories. All these

results indicate that the gunner model is able to represent the character-

istics of the gunner response in the AAA compensatory tracking task.

C. Comparison

A comparison of the model prediction accuracy between this gunner model and

the optimal control model has been done for several target trajectories.

All the results show that both models give accurate predictions of tracking

errors. Some typical results are shown in Figures 27 through 30. It is

obvious that the gunner model developed by the authors can predict the

tracking errors as accurately as those obtained by the optimal control

model. However, the computer execution time for simulating the AAA gun

system using the gunner model is less than 15% of that used by the optimal

control model. It is a primary advantage of a model with simple structure.

The following table shows some highlights of the gunner model over the

optimal control model.

Gunner Model Optimal Control
(Observer Theory) Model

Model Structure Low High

Complexity

Computer Simulation 5.48 37.02
Time (Seconds)

Model Predictions Good Good
of Tracking Errors

Model Validation Parameter Trial-and-Error
Identification Tuning
Program
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A 0

Section IV

CONCLUSION

The Luenberger reduced-order observer theory has been applied to design an

antiaircraft gunner model which is composed of a reduced-order observer, a

state variable feedback controller and a remnant element. The highlights

of this model are simple structure and accurate model predictions. The key

design requirement is to make the model structure simple so that it will

shorten computer simulation time. It has also been shown in Figures 11

through 30 that this model can predict the tracking errors accurately. In

addition, parameter identification program based on the least squares

curve-fitting method and the Gauss Newton algorithm has been developed. It

provides a systematic procedure to determine the numerical values of the

model parameters. This gunner model has been used to study the AAA

effectiveness of several foreign air defense weapon systems at the Aerospace

Medical Research Laboratory, Wright-Patterson AFB. All the results show

that it is an accurate and efficient antiaircraft gunner model. Therefore,

this model can be used to study AAA effectiveness and aircraft survivability.

5
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APPENDIX A

Derivation of Model Prediction of Mean Tracking Error

The model prediction eT of the ensemble mean of the tracking error as an

explicit function of time t and parameters y, y2 and k is derived in this

Appendix. First rewrite Eq. (16)

X = A 1X + F 16

It can be shown that the solution X of Eq. (16) is given by

g(t) = J (t - ")F T(T)dr

where 4 is a 3 x 3 matrix and equals:

11 12 13

(t) = eA t
23

L 31 32 331J

The first component R1(t) represents the ensemble mean of the tracking

error. From Eqs. (1) and (15),

F = f -kf 1
1 2 1

f-kf1
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_iT,(t) can be expressed by

-, - t
= (t) = - ) + (t - T ()dT

1 312 13 T

Let G(s) be a 3 x 3 matrix which represents the Laplace transform of the

transition matrix 0(t); then it can be shown that

1 Adj(sI - A,)
G(s) = (sI-A d- det(sI - A

where s is the variable of the complex plane and I is a 3 x 3 identity

matrix. det and Adj denote the determinant and adjoint of a matrix

respectively. Let Gij(s) be the ijth element of the matrix G(s); then

i +'Y 2
G (s) = 1y
12 s2 - yls

and

G SN -Y2G (a)
13 s2 + (k - y1)s - ky1

For simplicity, select y = -1, then G12 (s) 0 and

131G (s)
13 E2 + (k - y )s -ky I
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Taking the inverse Laplace transform of G1 3 (s), we have

y1t -kt

(t) =e e
13 y +k

So

t eyl(t e-k(t-

T(t) f y + k T (O dT

00

This is the explicit function of 4' in terms of the unknown parameters.
T

The derivicives of T(t) with respect to parameters k and y1 are expressed
in the following (

yl't Tt -k(t

(t) t (YI + k)(t - )e l (t  - eY(t - T) _ -k(t -)

DY 1 f 00(Y
1 +k)

* oT(t)dzt

These quantities are used in the mean curve-fitting parameter identification .

program,
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APPENDIX B

Derivation of Model Prediction of Standard Deviation of Tracking Error

The function S2 which is the square of the standard deviation of the

tracking error is derived in terms of a, , and a. Equation (18) is1 2 3
rewritten here:

P(t) = O(t,to)P(t0 )T (t,t0) +

ftt  0(t,T)D1 q(T)D TT (t,T)dt

O

where

^A

q(T) =a 1 + a2 0 T 2 ( T) + a3 T 2 ( T ) ,

D = b ]2 - kb I  k

Lb2 - kbI j kJ

and let

1 -k -k

Q(T) = D q(T)DT -k k 2  k2  q(T)

-k k2  k2
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Since the first element p in the diagonal of matrix P(t) is the square of

the standard deviation of the tracking error and denoted by S2, then,

3 3 3
S p (t) = 2 (t,to)P (t) + ft z E
2 1 i=l o 0o j=l k=l

k (t-T)q kj (T) lj(t-T)dT

where qkj denotes the kjth element of the matrix Q. As shown in Appendix A,

the parameter y is selected to equal -1. Therefore 4 (t) = 0. Then

S2(t) = I 2 (t 't° ) l ~ °  + 132(t't°)3(o

2 11 (0 0 13 d 33 t

S [112(t-T) + 132(t-T)k 2 - 2 411 (t-T) 13(t-T)k] q (T)dT
to 1

where (t) has been computed in Appendix A and 41(t) is obtained in the
13 11

following. From Appendix A, it can be shown that

G (s) =
11 s y

So we have

Y II

( t) = eY~t

Then

2 tt)(Yl(t-tO) -k~-o +

S (t) el o p (to) + + - +k(t-t°) p
2 11 0 8 + k f33(
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t [eyl(t-T) e (t-t) - -k(t-T)-]

t - y + k

L

(a + a2 (T) + 3 (T))

This is the explicit function of S in terms of a, a 2and a.
2 1 2 3

Let
2y 1 (-t 0)e y (t-to0) e-k(t-tg) ) 2

f(t) - e o (to) + kp (t
0l Yl +Pk33(t°

and

f (t) - - k e 1 - e

2 y 1 +k

then

S 2(t) = f (t) + to f2(t-T) (a + a 2T 3 T2(T) dT

Now the derivations of S (t) with respect to a , a , and a are2 1 2 3

BS2(t) ft
a = t f (f-T)dT

DS2(t) ft
3 O 2 (t--)O 2(r)dT
2 o

as 2(t) ft

23 o f (t-T)
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These quantities are used in the standard deviation curve-fitting parameter

identification program.
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APPENDIXk C

Flow Chart and Program Listing of Time Domain Curve-Fitting Program

A. Flow Chart of Parameter Identification for Parameters Associated with

Mean Tracking Error Equation.

READ: INITIAL COMPUTATIONS

-EMPIRICAL DATA- MEAN -OBSERVER MODEL PREDICTION OF MEAN
TRACKING ERROR: Y) TRACKING ERROR: i(t)

-TRAJECTORY INFORMATION: -PARTIAL DERIVATIVES OF (t) WRT

6T(t) PARAMETER VECTOR o

-INITIAL PARAMETER -VALUE OF COST FUN;i'ION:
GUESS 

N
o ~ ~ ~ ~Jo = ,7]

go K1 61] 0T:

CALCULATE -

UPDAIE PARAAETER V.C'IOR']

UPDATE: T{(t)T. , ( t ) / D c ..
d i.F+

YV < / 14,-1, <. I1, L':-I~~ -1. ...+1-

-- --2jk NOp<i, '% .. %

Ep I I CHECK: NO SO 5--

L4Y ERRO "2

I t. ,ND , i+, Ji Ji I ----- 2

2i 2-1

CS-2-D61



Comments: Execution of Program Fit.

1. Compile Program

2. Input: Tape 1 contains

a. Azimuth and elevation trajectory information

b. Empirical data - mean tracking error

3. Load Library Routines:

a. VCONVO - convolution integral computation from International

Mathematical & Statistical Library (IMSL).

b. GMINV - matrix inverse routine from D. L. Kleinman Library

[12).

4. Execute

5. Output: Parameter values [k, y1].

62
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______PROGA I-FI T(I.NPtJTOUTPUTJTAD Ei)_____________
COMMON /VIA RfLMi, L1112tEEI PHNDELN0,02
OMHON /.IAT/ F2C(IJ 1),sA2),AA(2) 9B(121 t2)O(2) 3(096)

C CURVE FIT MOTIAJE TO OETERP1INE IF=2 PARAMElTERS KGAIN & GAMMAi

iu REA(i,3)F3(I+N) ,ZZiZ2

-3 ff U - , + 2.5)
4 F CRMAT (3 G 124) ___________

i FR NTr* v 5 G FHIT'y I rT 0 .0 TYPT tTO 
READ* ,IFG __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _

CALL INIT

swa- ur-r o I -

C ___INITIALIZATION ROUTINE______________________

c MAKE INITIAL GUESS ___ ________________

______COMMON4/MAT/F2(iJ214),A(2),AA(2),8(±O2L4,2),O(2),F3(4096) __

REAO4, LI Mi 1,LI M2 t E E ____ __ __

PRINT* ,3H 'lv~2HjjH~lq~ 5~t2tI~3E~E9R-- 9'
PRINT*9,50H TYPE IN INITIAL GUESS - KGAIN, GAMIIAi __

REA 0*, AA-
PRINT~,igH 1ST GUESStAA __

______CALL COEF (AARJ2) ___________________

~~rI'rr N1k, T -- ___

CALL LOOP( M2)________

SUBROUTINE 00

____IMENSI314 1(2 ) 0 ( 2,92)qWi (2t 2) __________

CoMiMON/4AT/F?(ij2L4)A(2)AA(2),B(i02,2)tO(2),F3(4096)

N (I M=IPS N0111=I0 +i ____________ _________

LTo - 79,=HIT~ Q
SN=F3 (K) -F3 (K+N)____

00 25 J=191P_______
aJ~~T ~ -hRKTIT' wJ9 )-_____

3 R(I) R(l) +3 (KvI) SJ

CALL GMINV(IPV , Q, Wl,14R, D)
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00 50I, gl

5U (I)=-0( 'i(J*(I

C ITER4TIJN ;5OCE3S
c COMPUTE A(I+i)=.i(I)+O(I)
C DETERMINE WHEN A(I+1) IS ACCEPTABLE

DIIENSIJN 030)(2) __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

COM~tONUAR/LIii, LIH'2,EEIPHNDELNiN2
COMMON/MIAT/F2(i'24) ,A(2)tAA(2).,6(i024,2) 90(2)

---- 'NCT = 'lC T =0.
I CALL 00

2 O 00 i~o1,1IP -

LuG A(I)=AA(I)+0(I)
IF(A(i),LT.(. .O,'.4 (2)@GT.0.)GO TO 15
CALL COEF(Ai~Ji)

6 F(RJi.LT.UJ2)GO TO 30
15 DEL=0EL/2

______NCT=NCT+ij_____________ ________

IF(N-CT'.LE.LIfM±)GO TO 2
PRINT*,fHERROR it3H A~,A,5H NCT=tNCTdH MCT=,MCTRJiRJ2
kET URN

3U 00 35 I~iIP _______________________

O0D MI =ABS.(O M / AA (I))-
3 l F( DODOQI).oGT oEE) GO TO 20____

GO TO .41
20 MCT=M1CT+iTO9-

PRINT*97HERROR ?13H A=9A95H NCT=,NCTi5H MCT=,MCTRJL.,RJ2__
RET U.-0

9 RJ2=ROJi____________

0O 25 I119P
2 AA(I)=A(I)________--

GO TO i
40 PRINTr45,(A(I),I=itIPtNCTqMCT____

PRINT* ,3 HAAM, A
PRINT*,3H 0=~,D ________ _____________

PRINT*t5 HJMINZ jl
45 FCRMAT(iXt3Gi2s',t2X2l3) _____ _

SUBROUTINE COEF(W,RJ) __ ___

C COMPUTE M.EAN TRACKING ERROR FOR GIVEN -PWAMMETERS
C EXPRESS PARTIAL DF-RIVATIVES OF MEAN_________ ERROR WRT

KGANAN) GAM1AiIN MATRIX 6

64' CST'UIIYpAZ, 3 BL(



OIMENSI3N '4(2),TWK(12)____ __ __________

COMMON/VAR/LI11i, L*i,' EEtIPpHtNtDELNiFN
_____COM'MOrJ/MAT/F2i.24tflA(2),AA(2),a(1024,2),0(2)p3(.096)

V=W (2)

___ ___ REWIND4 i _ _ _ _ _ _ _ _ _ _ _ _ _ _

WRITE{1)_F3(114)_________________________

6 (1) =F2( I)

____1F(U*T oGE s ZI . )Sfi.___________________ ___

'-Tv-,r- 0 E .-27J 0 .) fi
IF( Si .-- 0,) SiEXP (-UT)

F .F3T1T~rR
C H=TI'1F STEP .04 ________

WRITE(i.) P
B(I)=F2(I)
T=(I-1)*H _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

______IF(U#T.GE.230. )3i=0. ______________________

IFM6Si.:oEDo.)SiEXP (-U*T) ______________

D0 20 I=iO~_______________

WRITE~i)FF ___

_____T=(I-i)#H_______________________________

____ _ I IF(U*T *,E 2 0 ) 3 i=0 . __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

IF (S * E * 0 0 i=7XP -UT)

26 F3(I)=(3-S)/X_______________ _____

REWIND I

00 60 I=191
1WEXflTM' M1 N)

60 CONTINUE ______

UT077T-1 -= N TTT

?5ttAIMS IS B&ST QUAiLM7Y



B. Flow Chart of Parameter Identification for Parameters Associated with

Standard Deviation of Tracking Error Equations.

READ: INITIAL COMPUTATIONS:

-EMPIRICAL DATA-VARIANCE -OBSERVER MODEL. PREDICTION OF
OF TRACKING ERROR: S1 (t) VARIANCE OF TRACKING ERROR; S2 (t)

-TIAJECTORY ESTIMATES: -PARrIAL DERIVATIVES OF Sa(t) WRT
87., 1T PARAMETER VECTOR bo

-IDENTIFIED PARAMETERS -VALUE OF COST FUNCTION
NQ_ :[< ,,j E St ( ,t)_-s2(0)l

- INITIAL PARAMETER GUESS: 1:1

I CALCU LATE

UPDATE PARAMETER VECTOR:
b[+j - §j~ +pD[

UPDATE: S

YES j_+___01_N

:S Sz

CHECK; N STOP

pLIM1ERROR I

YES NO i ii

WRITE: [UPDATE'
YES C I ECK; NO SoP

2RROR

4LLM2 kER~O

I,= L+1
STOP J
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Comments: Execution of Program Fit 1.

1. Compile Program

2. Input: Tape 1 contains

a. Azimuth and elevation trajectory information

b. Empirical standard deviation of tracking error

3. Load Library Routines:

E. VCONVO - convolution integral computation from International

Mathematical & Statistical Library (IMSL).

b. GMINV - matrix inverse routine from D. L. Kleinman Library

[12].

4. Execute

5. Output: Parameter values for [a 1 a 2 a 3
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- 2--OUGRAFI IIP UPU JLOUPAJ)-PE1
C INPUT MEAN TRACKING ERROR PARAMETERS

REAOD, Ai, AZ

CALL CONVO(AiA2)

REAO% IFG

CALL !NIT

E NO

c INITIALIZATION ROUTINE

C MAKE INITIAL GUESS

COHIMON/MAT*/A(3) ,AA(3),B(±OZit4),O(3) ,F2(it324)

PRINt*,30H TYPE IN LIMiLIM2?EE

PRINTI'93H N~,N,5HLIM±~,LItit5HLIM12=,LI12,3HEE=,EE,3HIP:,IP.
-RTNT-s5.-l-.-IA.1T. .L-LUESS =-ALP ?HAI 9.A LP-HA 2 0. L P-H A 3
REAO~tAA

DEL~i
---. CALL-C.0EFlAA.o JJ..

PRINTV-tiGH JMIN(i)= ,RJ2

END
S V 0ROU-N EDDIRlP..____

C CALCULATE 0 MATRIX FROM Q AND R

COMMON/VAR/LIMiLIM2 ,EEHN ,tDELNiN2

CONMON/MAIN/NDIMN0Itli

DO iD I~iIP

DO £0 J~i,IP

DO 35 K=N±,N2

DO 30 I~iIP

25 Q(IvJ) Q(ItJ)4+8(KvI)*6(KvJ)
30DL.R( fL--R.1I±$ (-K1L± SA'.______________
35 CONTINUE

-CAL".M.IRVA.1P 4 I.Ps-,9Q-WMfL...-___ _______

IPi~IP*IP

3*3PAZISB3TQ1.N-



END
S UB~RPM_____

c ITERATION PROCESS
&.~PBUI~ .(i..1LA.LILtDI L ____

C DETERMINE WHEN A(I*1) IS ACCEPTABLE
DIMENSION DOOM3
COMMON/VAR/LIMi, LIMZEEHNDELN±,N2

__0_ piio, NLA ILUILSAAkU~.~D~L~i.l1. -1 (132
NCT=MCT=0.

2 DO iD I~i,IP

130 A (I) --A(I J+ 0(1)

CALL COEF(ARJi.)

7 DEL=DEL/2

IF(NCT*LE.LIMI)GO TO 2

RETURN

DD'O(I) :ABS(D(I)/AAI)

0O TO 40

IF(MCT*LE9LMiGO TO 9

RET UR4

DO 25 I=19IP

GO TO ±

PRINT* ,3HAA:,AA

PRINT~ ,5HJMIN~, RJi

SUBROUTINE COEF(WSUM)
C COM T JQR.PYRANE. UATION

C EVALUATE COST FUNCTION

COMMON/VARZ/LlMi ,LIM2;EE ,HN ,ELNiN2
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SUti:0.

10 CONTINUE

SUBROUTINE CONVO(AiA2)
SO!MELUEh~Aly

C DERIVATIVES ARE CONSTANT SINCE GAMMAi AND KGAIN ARE KNOWN

DIMENSION IWK(i2)tF3(2048)

COMMON/MA /A(3)AA(3)O(1024,4),D(3),F2(rj24)

DO,15 I~1,N

1 -56CONINUE Z*--
CALL VCNOQt~ N IWK),
0O 35 11i,N
93(1):F2(I) ___ _____________________

35 R E ADbi.,")T rf2()Z
____ REWIND ± ______________________ ______

060'20 .1±iN --.

BB=B(I) I
WRITECi) 08

-- CA LL ..V.C QN2JO LB,.E-3.4il., N4.IKL...

_____W RITEU 11
F3(I) =±.

CALL VCQNVO(BF3,NNIIWK)

DO 30 I:1,N
_____ D-5A. 2 J I )E! F. 2- W-___ __

DO 40 I:±,N

END

'L13 'p4. Sj
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APPENDIX D

Flow Chart and Program Listing of Computer Simulation of MAA Tracking Task

INPUT: TRAJECTORY
INFORMATION

PARAMETER VALUES

-SET UP MATRIX A, a COMPUTE
STATE TRANSITION MATRIX:

c)=eA.41

-INITIALIZE STATE VECTOR: Z0

COMPUTE COVARIANCE OF 1
RANDOM REMNANT TERM: Vn

UPDATE MEAN SYSTEM EQUATION

2n+I = 32 + 1t dn

CALCULATE COVARIANCE MATRIX:
Ir T

Xn+I =dPXncD +irr Vn

WRlTE:Zn(i)STANDARD DEVITrION
O I TRACKING ERROR

VrXN 01,0'

YES __ T:T+h
TD~

NO

100 -_____

STOP
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Comments: Execution of Program OBS.

1. Compile Program

2. Input: Tape 2 contains

a. Azimuth and elevation trajectory information

3. Load Library Routine:

a. DSCRT - computation of transition matrix from D. L. Kleinman

Library [12].

4. Execute

5. Output: Time, mean tracking error, standard deviation for azimuth

and elevation.

7 I
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_______________PROGRAM OBS(INPUT, OUTPA!131APE_2)___________DIMENSION_ A3),Z('3-) ,X(393),tRi (3) 9W± (3t3),9W2(3 t3) 9P (7v2)

C REDUCED ORDER MODEL SIMULATION FOR S60 SYSTEM

C P(59IC)=ALPHAi P(6,IC)ALPHA2 P(7,IC)=ALPHA3
.*QM.QP EL.V S_$i . TAT FFjA RDEL L S1...________

Ni=N*N S N2=N+i

PRINT*950H TYPE i FOR AZ 2 FOR EL 3 FOR BOTH

IF(IFG.EQ*±) L2=i
.LEU.LE _Q * ._ j

DO 500 IC=LiL2

Z( )=Z i)- .= 091G
00 10 J~i,Ni

A(i):P(i,IC)

___ __ A(2L)=__ __ -- __ __ __ __ ___ __ __ __ __ __ __ __ __

c COMPUTE TRANSITION MATRIX -Wi

CAL L-0-.0 RTIR-L9D±LdI...
o CALCULATE CONSTANT MATRICES

R Ii

45 I1=II+i
5I CQ~UNW __ _ __ _ __ __ _ __ __E_

DO 60 I=i,N

DO 60 J~iN

DO 20 I~i,N

_____.JJJ T_ RA L JEtL C TOR INOI A N
± RED23C9~P4iv~Ct(4,2)
3 FOR~AT(G 12, 9_______ __

___ ___P5=(P4-PP4) /DEL _ _ _ _ _ _ _ _ _ __ _ _

PPL4:Pi&
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DO 25 I~i,N

W(I)=Do
_______0 15 J=I jLjNN______

15_____I=II+i
25 CO6NTINUE
C UPDATE MEAN ERROR EQUATION

DO 35 I~iN
Z(I)=W2(I)+Ri(I)*P(41IC)

35 CONT14UE
C UPDATE ERROR COVARIANCE EQUATION

CALL MULT(WiXNN±,W2)

C OUTPUT MEAN ERROR TRACKING ERROR-Z(±), AND STANDARD DEVIATION
Gr. iT-nx.ER RA,.sAR -Oall IOFx (14

T=T +0EL
L K =( I±.GL-tU-D-EL
IF(MOD(LK,25) .EQ.U)PRINT75,TZ(1) ,SD

IF(T*GETENO)GO TO 500 ____

500 CONTINUE

SUBROUTINE MULT(EFLL±,H)

C MATRIX MANIPULATION H=EFE9

TEMP=0.________________ __

KK=(K-±-)*L+I
to G XKAaT.EM P____

00 20 I:1,L
nQQ2LJLtL
TEMP:O.

DO 15 J=It1itL
_LE]IP(?.T.EJAP+ .fl*F1TT)

15 II=114'L
-~ ~ KK= CK.. ±L ±I ______________T____

20 H(KK)hTEMP

DO 30 I~iL2

DO 30 J4L3tL
K = T-1_1' -.-

K2=(J-i)*L+I
-3L-- L fKil-=.HK 21L

END
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